網絡日志:蒙特卡羅方法入門

Ad

本文通過五個例子,介紹蒙特卡羅方法(Monte Carlo Method)。

蒙特卡羅方法入門01

一、概述

蒙特卡羅方法是一種計算方法。原理是通過大量隨機樣本,去了解一個系統,進而得到所要計算的值。

它非常強大和靈活,又相當簡單易懂,很容易實現。對於許多問題來說,它往往是最簡單的計算方法,有時甚至是唯一可行的方法。

蒙特卡羅方法入門02

它誕生於上個世紀40年代美國的”曼哈頓計劃”,名字來源於賭城蒙特卡羅,象徵概率。

 

二、π的計算

第一個例子是,如何用蒙特卡羅方法計算圓周率π。

正方形內部有一個相切的圓,它們的面積之比是π/4。

蒙特卡羅方法入門03

蒙特卡羅方法入門04

現在,在這個正方形內部,隨機產生10000個點(即10000個坐標對(x, y)),計算它們與中心點的距離,從而判斷是否落在圓的內部。

蒙特卡羅方法入門05

如果這些點均勻分佈,那麼圓內的點應該占到所有點的π/4,因此將這個比值乘以4,就是π的值。通過R語言腳本隨機模擬30000個點,π的估算值與真實值相差0.07%。

 

三、積分的計算

上面的方法加以推廣,就可以計算任意一個積分的值。

蒙特卡羅方法入門06

比如,計算函數y = x 2在[0, 1]區間的積分,就是求出下圖紅色部分的面積。

蒙特卡羅方法入門07

這個函數在(1,1)點的取值為1,所以整個紅色區域在一個面積為1的正方形裡面。在該正方形內部,產生大量隨機點,可以計算出有多少點落在紅色區域(判斷條件y < x 2)。這個比重就是所要求的積分值。

用Matlab模擬100萬個隨機點,結果為0.3328。

 

四、交通堵塞

蒙特卡羅方法不僅可以用於計算,還可以用於模擬系統內部的隨機運動。下面的例子模擬單車道的交通堵塞。

根據Nagel-Schreckenberg 模型,車輛的運動滿足以下規則。

  • 當前速度是v 。
  • 如果前面沒車,它在下一秒的速度會提高到v + 1 ,直到達到規定的最高限速。
  • 如果前面有車,距離為d,且d < v,那麼它在下一秒的速度會降低到d – 1 。
  • 此外,司機還會以概率p 隨機減速, 將下一秒的速度降低到v – 1 。

在一條直線上,隨機產生100個點,代表道路上的100輛車,另取概率p 為0.3 。

蒙特卡羅方法入門08

上圖中,橫軸代表距離(從左到右),縱軸代表時間(從上到下),因此每一行就表示下一秒的道路情況。

可以看到,該模型會隨機產生交通擁堵(圖形上黑色聚集的部分)。這就證明了,單車道即使沒有任何原因,也會產生交通堵塞。

 

五、產品厚度

某產品由八個零件堆疊組成。也就是說,這八個零件的厚度總和,等於該產品的厚度。

蒙特卡羅方法入門09

已知該產品的厚度,必須控制在27mm以內,但是每個零件有一定的概率,厚度會超出誤差。請問有多大的概率,產品的厚度會超出27mm?

蒙特卡羅方法入門10

取100000個隨機樣本,每個樣本有8個值,對應8個零件各自的厚度。計算發現,產品的合格率為99.9979%,即百萬分之21的概率,厚度會超出27mm。

 

六、證券市場

證券市場有時交易活躍,有時交易冷清。下面是你對市場的預測。

  • 如果交易冷清,你會以平均價11元,賣出5萬股。
  • 如果交易活躍,你會以平均價8元,賣出10萬股。
  • 如果交易溫和,你會以平均價10元,賣出7.5萬股。

已知你的成本在每股5.5元到7.5元之間,平均是6.5元。請問接下來的交易,你的淨利潤會是多少?

取1000個隨機樣本,每個樣本有兩個數值:一個是證券的成本(5.5元到7.5元之間的均勻分佈),另一個是當前市場狀態(冷清、活躍、溫和,各有三分之一可能)。

蒙特卡羅方法入門11

模擬計算得到,平均淨利潤為92, 427美元。

 

七,參考鏈接

(完)

2015年7月27日

 

阮一峰的网络日志

http://www.ruanyifeng.com/blog/

%d bloggers like this: